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The study of Wiener-Levinson digital filters leads to certain classes of polyno
mials orthogonal on the unit circle (Szeg6 polynomials). Here we present theorems
that show that the unknown frequencies in a periodic discrete time signal can be
determined from the limiting behavior (as N ..... OCJ) of the zeros of fixed degree
Szeg6 polynomials that are orthogonal with respect to a distribution defined from
N successive samples of the signal. This proves an essential part of a conjecture due
to Jones, Njastad, and SalT concerning the frequency analysis problem. © 1992

Academic Press, Inc.

1. INTRODUCTION

We use the term signal to denote a doubly-infinite sequence x =
{x(m)} ~ 00 of real numbers. Here we are concerned with periodic signals of
the form

x(m) = I !Xjeiw)m,

j= -I

x(O)#O, (1.1 )

where I is a positive integer, the frequencies wj satisfy wj E R, W _j = -Wj'
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0= Wo < WI < ... < WI < n and the coefficients r:t.) satisfy r:t.j E C, r:t. _j = rI.),
-l~j~l. In (1.1) we further assume that r:t.j#O, for j= 1,... , I, and that

r:t. o~ 0 (note that we allow the possibility that r:t. o = 0). The classical
frequency analysis problem concerns determining WI' W2' ... , WI from N
successive samples of the signal (1.1); that is, from the N-truncated causal
signal X N defined by

0~m~N-1

otherwise.

(1.2)

Here we consider a method for solving this problem that is based upon
the techniques of Wiener [W] and Levinson [L] and developed in the
work of Jones, Njastad, and SafT [JNS]. The starting point for this method
is the autocorrelation coefficients

.'I-I

~kN):= L xN(m)xN(m+k),
m=O

k=O, ±1, ±2,.... (1.3)

As is easily verified (cr. [JNS]), these quantities are the moments of the
distribution dl{! .'I ((}), - n ~ (} ~ n, defined by

where

.'I-I

XN(z):= L xN(m)z-m
m=O

is the Z-transform of the signal X N . That is,

(1.4 )

(1.5)

k=O, ±1, ±2,.... (1.6 )

For n =0, 1,2,..., let

K N.n >0, ( 1.7)

denote the unique sequence of orthonormal polynomials on the unit circle
(Szego polynomials) with respect to the distribution function dl{! N' The
corresponding monic orthogonal polynomials

(1.8 )
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can be generated from the moments (1.3) by using, for example, Levinson's
algorithm [L]. As is well known, the polynomial f/JN,,, satisfies

1 1 fTC
K~,fI = 2rr -TC If/JN.,,(ZW dl/!N(O)

= min ~fTC Iz"+ .. ·1 2 dl/JN(O), z=e,lI, (1.9)
z" + ... E 3'n 2rr - TC

where the minimum is taken over all monic polynomials of degree n,
Furthermore, all the zeros of f/J ."I." lie in the open unit disk Izi < 1 (cf. [Sz,
p. 292]).

The main idea of [JNS] is that the zeros of the Szego polynomials f/J ."I,,,

can be used to determine (approximately) the frequencies wj ; that is, for
suitable Nand n, these polynomials should have zeros near the points e iwJ

•

A crude motivational argument for this behavior is the following. As shown
in [JNS],

(1.10)as N -+ 00,1 * ~ 2Ndl/J.rv -+ . ~ l(Xjl be'Wj

J= -I

where b= denotes the unit point mass at z, and the convergence is with
respect to the weak-star topology of measures.! Thus for N large, dl/J ."I is
large near each point eiW

} and is relatively small elsewhere on the unit circle.
Now in order to achieve the minimization property in (1.9), the polynomial
f/J N,,,(Z) should be "small" near points where dl/J ."I is relatively large; so
it is reasonable to expect that f/J.rv.,,(z) has zeros that are close to the
points e iwJ

•

Indeed, Jones, Njastad, and Saff have made the following

Conjecture [JNS]. If (xo > 0, then as n + N -+ 00 (n ~ 2/+ 1) in a
suitable manner, the 2/+ 1 zeros of f/J N.,,(Z) of largest modulus approach
the points eiWJ

, - / ~ j ~ I. (In case ao= 0, this conjecture should be
modified to refer to the 2/ zeros of f/J N.,,(Z) of largest modulus.)

Some theorems and numerical experiments that support the conjecture
are given in [JNS, JS, P]. As one of the main results of the present paper
(cr., Theorem 2.4), we prove that the above conjecture is true for any fixed
n ~ 2/ + 1 and N -+ 00. Moreover, for n = 2/ + 1, we show that the rate of
this convergence is O(l/N).

Before stating our main results we introduce some further notation. We
set

I ZN _e iwJN

Wv(z):= ZN-!XN (=)= L aj iw'
I . J = -I Z - e I

(1.11)

I In (1.10), dt/J N is regarded as a measure on the unit circle rather than on [- IT, IT].
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and let D.rv(z) denote the Szego function D.rv(z) for the weight IX .rv(eiOW:

It is readily seen that l/J:v Ui) = I X N(e iO )1
2 satisfies the Szego condition

r l/J'.rv(O) dO <Xi,
-rr

We also know that (cr. [JNS])

and
~rr

J log l/J:",(O) dO> -Xi.
-rr

(1.12 )

where the ZN.k'S denote the (N - I) zeros of the polynomial W.rv(z) and the
sign (±) is chosen so that D",(O) > O.

Finally, for any polynomial p of degree n we denote the reverse polyno
mial of p by

p*(z) := zn p(1/f).

The outline of the paper is as follows. In Section 2 we state our main
results. The proofs of these results are given in Section 3. In Section 4 we
present a related theorem that is valid uniformly in n.

2. STATEMENT OF MAIN RESULTS

In this section we state and discuss our main results. Their proofs are
given in Section 3. In addition to the notation of the preceding section, we
set

j= -I,..., I.

THEOREM 2.1. Assume that iXo > 0 in the signal (1.1). Then, for each
fixed n, 1~ n ~ 21+ 1,

lim eJ>N.n(Z) = eJ>n(z),
,'\'-Y:.

ZEC, (2.1 )

where eJ>n(z) is the unique monic polynomial of degree n orthogonal with
.respect to the discrete measure

dt/J := I liXY bp"
J ~ -I

(2.2)
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In particular,

I

lim cPN.2/+I(Z)=cP2/+I(Z)= Il (z-/3;),
N-oc J=-l

ZEC.

243

(2.3 )

In (2.1) and (2.3), the convergence is uniform on compact subsets of C.
More precisely, we have for each fixed n, 1~ n ~ 21 + 1, and each compact
set Kc C,

ZEK, N= 1, 2, ..., (2.4 )

where A is a constant that depends on K.

We remark that here and below analogous results hold for the case when
ao = 0; their statements are left to the reader.

Since the measure dljJ in (2.2) is supported in 21+ 1 points on the unit
circle, it is easy to see from standard arguments (cf. [Sa]) that all the zeros
of cP I, cP 2,..., cP 2I lie in the open unit disk. Hence, from (2.1) and Hurwitz's
theorem we get the following:

COROLLARY 2.2. If ao> 0 and 1~ n ~ 21, then, as N --+ 00, the n zeros of
cP N,n approach n (not necessarily distinct) points in the open unit disk Izi < 1,
namely, the n zeros of cPn-

Of course from (2.3) we can also conclude that the 21+ 1 zeros of
cP N,21+'(Z) approach the points /3;, -I~j~I. More precisely, we have

COROLLARY 2.3. Assume ao> O. For each N large, let /3 N.; denote the
zero ofcPN,21+'(z) that is closest to /3;. Then, for j= -I,..., I,

as N --+ 00. (2.5)

Concerning the frequency analysis problem, Corollaries 2.2 and 2.3
imply that if the degree n of the Szego polynomials cP N,n is strictly less than
the number of critical frequency points e iwJ

, then all the zeros of these Szego
polynomials stay away from the unit circle and hence do not converge to
any of the points e iwJ

• On the other hand, if the degree of these Szego
polynomials precisely matches the number of points e iw1

, then their zeros
converge to all the points e iwJ

•

Remark. The rate of convergence in (2.5) is, in general, the best
possible. This can be seen from the following example for the case when
ao = O.

Let

x(m) : = e - iTtmi2 + eiTtm
,:2 = 2 cos(nm/2),
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so that f3 -I = - i, f31 = i, and C/>2(Z) = Z2 + 1. On computing the moments
J1~'V) and using the determinant representation for the orthogonal polyno
mial C/> N. 2, we find

{
Z2 + 1- 21N,

C/>N,2(Z)= Z2+ 1-2/(N+ 1),
for N even

for N odd.
(2.6)

Thus, the zeros of C/>N,2 approach ±i with exact rate liN.
We conclude this section with the statement that the conjecture of Jones,

Njastad, and SafT mentioned in the Introduction is true for every fixed
n?:: 21 + 1.

THEOREM 2.4. Assume c(o > O. Then for each fixed n?:: 21+ 1, the
21+ 1 zeros of C/> N,n(Z) of largest modulus approach the points f3j' -I~ j ~ I,
as N --+ 00.

Remark. Unlike the case n~21+ 1, the sequence {C/>N,nL~~l for fixed
n > 21 + 1 need not have a unique limit. In the proof of Theorem 2.4 we
actually establish that every such limit polynomial must be of the form
C/>21 + I Q, where Q has all its zeros in the open unit disk. Thus for fixed
n> 2I+ 1, precisely 21+ 1 zeros of C/> N.n approach the critical frequency
points e iw

} on the unit circle, while the remaining n- (21 + 1) zeros stay
away from the unit circle.

In case c(o =0, Theorem 2.4 should be modified to read that for fixed
n ?:: 21, the 21 zeros of C/> N.n of largest modulus approach the points f3j'
j = ±1,..., ± I. For example, let

x(m ) = e - ",rnA + eirrrn ,4 = 2 cos(nml4 ),

C/>2(Z) = Z2 - j2 Z+ 1.

In the case when N=.O (mod 4) formula (1.3) gives

J1~t) = 2N, J1~NI = j2 (N - 2), J1\1" 1= -2, J1~NI = -J2 (N - 2),

from which we find, using the determinant representation, that

}~mx, C/>4k,3(Z) = C/>2(Z) (z +f).
On the other hand, when N =. 2(mod 4) we get

J1~N)=2N+2, J1~N)=j2N, J1iN)=O, J1~N)= -j2(N-2),

(2.7 )
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from which we deduce that

(2.8)

Thus, the sequence {«1>!,dZ) } f does not have a unique limit polynomial.

3. PROOFS

Let {Ilk}:: (Xj denote the moments of the discrete distribution dl/J defined
in (2.2), that is,

• I

1/ • - J 'i
k d·/, - " IN 1

2 p-kf""k . - ~ 'P - L v.j j"

j= -I

k=O, ± 1, ±2,.... (3.1 )

For ao > 0, the measure dl/J is supported in 21+ 1 distinct points and so the
sequence {/ld a: x; is a positive (21+ 1)-definite Hermitian sequence. This
means that

A" >°for °~ n ~ 21, and Au + 1 = 0,

where

(3.2)

Thus, the monic orthogonal polynomials «1>,,(z) with respect to dl/J can be
written as (cf. [Sz, p. 288])

110 /l-l 11-"

1
III /lo /l-" + 1

«1>,,(z)=--det (3.3 )
A"_l

11,,-1 /l,,-2 /l-1

Z z"

for n = 1, 2, ..., 21+ 1.
For the moments /liN) of (1.6) corresponding to the measure dl/J N in (1.4)

we similarly define

A(N).= det(I/(N).)"
n' f""l-jO' (3.4 )

which are positive for all n ~ 0. The monic orthogonal polynomials «1> N,,,(Z)
with respect to dl/J N then have the same representation as in (3.3) with /lk
replaced by /liN). Moreover, this representation is valid for every n ~ 1.
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From the weak-star convergence (1.10), it follows that

k =0, ± 1, ±2.....

More precisely, we have

LEMMA 3.1. For each ji;'(ed k = O. ±1, ±2,....

1
NJiYl = Pk + O( liN) as N --+ 'lJ. (3.5)

As noted in [JTNW] and [P], this result easily follows from (1.3).

Proof of Theorem 2.1. From Lemma 3.1 we have for each fixed n ~ 1,

as N --+ CfJ.

Thus, from the determinant representations for <P N . Il (z) and <P1l(z) we get
for each n = 1, 2, ..., 21 + 1,

1
<P (z) = det

N.n N"(A n _ I +O(l/N))

p~NI p lNI
-I

pIN) p~NI

pIN) p(N)
n -I n-2

--

/lIN)
r -11

IN)
P-Il+ I

_n

An -I + O(IIN)
det

Po /1-1

PI Po

PIl- 1 P1I '- 2

P-Il

P -11+ l

P-I
_11

+ O(l/N)

where O(l/N) is uniform in z on any compact subset of C. I

Proof of Corollary 2.3. Since 4l 2l+ \(z) = f1~~ _lIz - /3j), it follows from
(2.4) that

I<P N,21 + 1(/3,)1 = O( IIN), -1~.i~I. (3.6)
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As previously remarked, fJ N,; --+ fJ; as N --+ 00, for - I::::;; j::::;; I. Thus, for N
large, we have

as N --+ Cy:;,

for j= -1,.." I. I

The proof of Theorem 2.4 requires some preliminary lemmas,

LEMMA 3.2. If ao> 0, then, for n ~ 21+ 1 and any N ~ 1, the leading
coefficients KN,n of the orthogonal polynomials ¢>N,n(Z) in (1.7) satisfy

where r := 22/
+ I L:5= -I la,;!.

K:V,n ~ l/r > 0, (3.7)

Proof From the extremal property (1.9) and the definition of W N in
(1.11) it follows that for any n~ 2!+ 1 and Z = eiB we have

1 Itr
K~,n =pn~~}~' , 2n -tr IPn(zW IWN(zW de

::::;;2~rtr !zn-21-1 ;ftl (Z-fJ;)1
2
IWN(ZWde

=2~[trl;tl aj(zN-fJn II (Z_fJl)1
2

de

::::;;241+2(~_lla;lr =r
2

,

which proves (3.7). I

LEMMA 3.3. For all n ~ 2!+ 1 and N = 1, 2, ..., the reflection coefficients
et>N,n+l(O) satisfy

where r is given in Lemma 3.2.

Proof We use the fact (cf. [G. p. 7]) that

(3.8 )
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(3,9) I

Since (/lX-,n+l(Z) and WX-(z) are analytic in Izl ~ 1, we have from (1.9)

1 1 frr
-,2--=-2 l(/lt,n+I(ZW IWt(zWd8
K N,II+1 1t- rr

;;;, [(/lX-,n+1(0) wt(0)1 2=x2(0),

which, together with (3.7), yields

K;".!K;,II+ I;;;' (x(0)/r)2,

Hence the lemma follows from (3,8) and (3.9). I

LEMMA 3.4. Let Q(;t: 0) denote any polynomial all of whose zeros lie in
Izi < 1. If AE C satisfies IAI < 1, then all the zeros of the polynomial

T(z):= Q*(Z)+ZAQ(Z) (3.10)

lie in Izi > 1.

Proof Suppose to the contrary that T(zo) = 0 and IZol ~ 1. Then from
(3.10), we see that zo'= 0 and 1Q*(zo)1 = IZoAQ(Zo)\. Therefore, since
Q*(zo)'= 0, we have

1= IZoAI IQ(zo)/Q*(zo)1 ~ IZoAI < IZol,

where the next to last inequality follows since Q/Q* is a Blaschke product
with all zeros in Izi < 1. This contradiction completes the proof. I

Proof of Theorem 2.4. Clearly the theorem will be proved if we show
that for each fixed n ;;;, 21 + 1, every limit polynomial of {(/l N,II } ~ ~ I is of the
form

(/l 21 + 1 Q" - 2/ - 1 , (3.11 )

where Q II _ 2/- J is a monic polynomial of degree n - 21 - 1 that has all its
zeros in the open unit disk Izi < 1. (Recall the representation of (/l2/ + 1(z)
given in (2.3).) We proceed to prove this by induction on n.

For n = 2I + 1, this assertion follows from Theorem 2,1. Now assume
that it is true for n = m( ;;;, 2I+ 1) and consider the recurrence formula

(cf. [Sz, p. 293]). Without loss of generality, we restrict ourselves to a
subsequence {Nd such that, as k ~ CD,

(/lNk. m+ I(Z) ~ R(z) E&Pm+ l' and (/lNk,m(z) ~ S(Z)E &Pm' (3.13)

where the convergence is locally uniform in C. (Recall that all the zeros of
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the <PN,n(z)'s lie in Izi < 1 and hence for each fixed
normal family in C). Then we have from (3.12)

R*(z) = S*(z) +z R(O) S(z).

249

n, {<P \ x IS aN.n) N=1

(3.14 )

By the induction hypothesis, we have S(z) = $2/+ [(z) Q(z), where Q(z) is
a monic polynomial of degree m - 21 - 1 having all its zeros in Izi < I.
Thus (3.14) can be written as

R*(z) = $f/+ [(z) Q*(z) + z R(O) $2/ + [(z) Q(z)

= $!/+ I(Z)[Q*(z) + z R(O) Q(z)], (3.15)

where we have used the fact that $21+1(Z)=$!/+l(Z) which follows since
$21+ ,(z) has all its zeros on the unit circle and has real coefficients.

The proof will be complete if we show that T(z) := Q*(z) +z R(O) Q(z)
has all its zeros in Izi > 1. This follows from Lemma 3.4 since, by
Lemma 3.3,

IR(O)I = lim I$Nk,m+ 1(0)1 ~ (1- (x(0)/r)2)'!2 < 1. I
k~ ::£J

4. A RELATED RESULT

The results of Section 3 apply only in the case when n is fixed; that is,
when dealing with Szego polynomials of fixed degree. Here we present a
related result that is valid uniformly in n.

THEOREM 4.1. For the signal (1.1), suppose that CXo > O. Then for every
n;;:: 21+ 1, the reverse orthonormal polynomials rP"N,n satisfy

~rP't,,,(rNPi )=O(l/v N) as N-HYJ, -/~j~/, (4.1)

where Pi := eiW1
, rN := 1 - 1/Nand (4.1) holds uniformly in n. In ease CX o = 0,

then (4.1) holds for any n ;;:: 21 and j #- O.

We remark that for n = 21+ 1 it easily follows from Theorem 2.1 that the
right-hand side of (4.1) can be replaced by O(l/N).

Before giving the proof of Theorem 4.1, we collect in the following
lemma some well known properties of Szego polynomials (cf. [G, Sz]).

LEMMA 4.2. For every fixed Nand Izi < 1, we have

(i) LZ=o IrPN,k(ZW ~ IrP't,,,(zW/(l-lzI 2),

(ii) KN,,,rP't,,,(z) = LZ = 0 ~N,k(O) ~N.dz),

(iii) lim,,_ x rP't,n(z) = DN(O) L:~o ~N.dO) ~N,dz) = DN(z)-[,

(iv) L%"=,,+I IrPN.k(OW=DN(0)-2_K~.",

where DN(z) denotes the Szegofunetionfor dljJN (el (1.12)).
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Proof of Theorem 4.1. From Lemma 4.2 and the Cauchy-Schwarz
inequality we have

IDN(O)-' D",(Z)-' - KN,nrPL(z)1

= I f. rPv.dO) rPN.k(Z)!
k~/l+1

~ ( i IrPN.k(OW f IrPN.dzW)12. (4.2)
k-n+l k-/l+1

Furthermore, from (i) and (iii) of Lemma 4.2 it follows that

Izi < 1.

Hence, from (4.2) and (iv) of Lemma 4.2 we get

and so

IrPt'/l(Z)I~DN(O)-IIDN(Z)I-'(I+ 1 2)'
K N.ll JI-lzl

From the representation (1.12) it follows that

-I 1 1
DN(O) = ~-.-,

±x(O) fhul;31 (-zv.kl Ix(O)1

Izi < 1. (4.3)

and from Lemma 3.2 we have I/K N./l ~ T for all N and all n~ 2I+ 1. Thus
from (4.3) we obtain for Izi < 1

T

x ( 1+ -J"'F1=~=Iz==12 )

= T fl IZ-ZN.kl(l+ 1 )
Ix(O) WN(z)!lo".kl<1 1-':N . k z JI-l z 1

2

~ T (1+ 1 ).
Ix(O) W",(z)1 JI-lz1 2

(4.4)
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Now if (J(j # 0 and z = (I - 1/N) eiw
} = rN (3j' we see from (1.11) that

IWN(z)1 ~ c\ N for some positive constant c\ and all N large. Furthermore,

Hence, from (4.4) we obtain

as N -> 00. I
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